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A theory of diffraction at small angles of scattering by a cylindrically constructed

structure has been developed and general expressions for two- and three-

dimensional cylindrically curved crystallites have been obtained. Modified

expressions have been derived for special cases of (a) a single arc of

equiangularly spaced identical atoms, (b) several coaxial arcs each having an

equal number of equiangularly spaced identical atoms and (c) such arcs

arranged at equal distances along the common axis of the arc, including single

cylinders and multilayered cylindrical structures. From the expressions obtained,

it is possible to measure the magnitudes of the radius of the cylinder, the length

of the cylinder, the angular distance between the scattering atoms on each

cylindrical arc, their atomic number and the radius of the hole inside each

cylindrical structure when a particular tube is considered for a particular

purpose or even when predicting the properties required by a nanotube for a

particular purpose.

1. Introduction

Recent interest in nanomaterials because of their technical

importance has generated enthusiasm for the study of the

properties and uses of nanomaterials, including the use of

nanotubes and hence of tubular cylindrical structures. The

problem of cylindrical structures has been discussed by a

number of authors (Fock & Kolpinsky, 1940; Wilson, 1949;

Blackman, 1951; Whittaker, 1955; Waser, 1955). The possible

types of circular cylindrical lattices have been discussed

(Whittaker, 1955), while others (Jagodzinski & Kunze,

1954a,b,c) showed that all cylindrical lattices including spiral

and helical structures can be described in terms of radial and

axial dislocations. It was shown that all cylindrical lattices can

be described in terms of dislocations introduced into a normal

three-dimensional lattice of appropriate dimensions (Whit-

taker, 1955). Fourier transforms of tubular cylindrical objects

have also been discussed (Waser, 1955). Cowley (1961)

derived expressions for diffraction intensities due to coher-

ently diffracting regions of a crystal in which the lattice is

elastically bent. We have earlier described diffraction inten-

sities due to tubular crystals (Mitra, 1965; Mitra & Bhatta-

cherjee, 1968, 1971), and using the formulae derived we

studied the structure of metahalloysite (Mitra & Bhatta-

cherjee, 1975). However, very little work seems to have been

carried out on the detailed arrangement of atoms in tubular

structures or in helical structures.

It is now well known that low-angle-scattering studies often

yield direct information regarding the structure of the mate-

rials studied because of simplifications in assumptions, such as

low-angle scattering by insect flight muscles in rigor (Holmes

et al., 1980) and small-angle scattering by helices and random

coils in aqueous solutions (Grigoryev et al., 1971). The

analytical interpretation of the small-angle X-ray scattering

functions for both randomly coiled and helical local confor-

mations of polypeptide chains in solution has been described

(Muroga, 2001). Keeping these developments in mind, the

present work – to determine the parameters of cylindrical

substances by investigations with low-angle scattering

assumptions – was undertaken.

2. Theory

2.1. Derivation of an expression for the diffraction intensities
due to a cylindrical arrangement of atoms

In Fig. 1, let ABCD represent a layer of identical atoms in

the XY plane of a curved crystallite. The repetition of ABCD

at regular distance C along the z direction will form the

crystallite. In the plane ABCD, the position of an atom P is

described by the coordinates (Pmr, ’r), where Pmr = R + mb

and ’r = r’. |R| is the radius of the first arc AB, |b| is the radial

distance between two successive concentric arcs, ’ is the angle

subtended at the common center O between two consecutive

atoms on the same arc, and m and r are integers including zero.

The amplitude of a beam of parallel rays diffracted by this

crystallite in the direction S = Sd � S0 (Sd and S0 denote unit

vectors in the directions of the diffracted and incident beams,

respectively) will be proportional to
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AðSÞ ¼ f ðSÞ
sinð�=�ÞTC � S

sinð�=�ÞC � S

X
r

X
m

exp½�ð2�i=�ÞðPmr � P0Þ � S�;

ð1Þ

where P0 is the value of P at the origin, f(S) is the atomic

scattering factor of the atom in the direction S, T is the number

of layers in the z direction and � is the wavelength of the

diffracted beam. The evaluation of A(S) thus depends upon

the evaluation of the quantity G(S) given by

GðSÞ ¼
P

r

P
m

exp½�ð2�i=�ÞðPmr � P0Þ � S�: ð2aÞ

In other words,

GðSÞ ¼
P

r

P
m

exp
�
� ð2�i=�Þ

�
Pmr � Sd � Pmr � S0

� ðP0 � Sd � P0 � S0Þ
��
: ð2bÞ

Let the incident and diffracted beams make angles �0 and �
with the Y axis as shown in Fig. 1. Let each layer of atoms be

composed of M concentric arcs, each arc containing N atoms.

Then equation (2a) can be written as (R and b being the

dimensions of R and b, respectively)

GðSÞ ¼
PN�1

r¼0

PM�1

m¼0

exp
�
� ð2�i=�Þ

�
ðRþmbÞ½cosðr’þ �Þ

� cosðr’þ �0Þ� � Rðcos�� cos �0Þ
��

ð3Þ

¼ expfð4�i=�ÞR sin½ð�þ �0Þ=2� sin½ð�� �0Þ=2�
�

�
PN�1

r¼0

PM�1

m¼0

exp½ð4�i=�ÞðRþmbÞ sinðr’þ � þ �0Þ sin ��;

ð4Þ

where � � �0 = 2�. Therefore

GðSÞ ¼ exp ð4�i=�ÞR sinð� þ �0Þ sin �
� �

�
PN�1

0

PM�1

0

exp½ð4�i=�ÞðRþmbÞ sinðr’þ � þ �0Þ sin ��:

ð5Þ

Using the relationship (Sneddon, 1956)

expðix sin Þ ¼
P1

p¼�1

JpðxÞ exp ip 

with Jp(x) as the pth-order Bessel function of the first kind

with argument x, we can write

GðSÞ ¼ exp ð4�i=�ÞR sinð� þ �0Þ sin �
� �

�
P1

p¼�1

PN�1

0

PM�1

0

Jp ð4�=�Þ sin �ðRþmbÞ½ �

� exp½ipðr’þ � þ �0Þ�: ð6Þ

Let us now ignore the z direction and consider a random

aggregate of two-dimensional crystals each identical with

ABCD and lying in the same plane as ABCD. Then the

measured intensity of the beam diffracted in the direction

making an angle 2� with the incident beam will be propor-

tional to the average value of GG* (where G* is the complex

conjugate of G), the averaging process being carried over all

values of �0 from 0 to 2� at the given value of �. The measured

intensity in the direction of 2� for such a cluster of two-

dimensional curved crystallites will be proportional to

hjGG�ji ¼ N2
PM�1

m¼0

J2
0 ½ð4�=�ÞðRþmbÞ sin ��

þ 2
Pþ1

p¼�1

PM�1

m¼0

Jp½ð4�=�ÞðRþmbÞ sin ��

�
�
½sin2 Npð’=2Þ�=½sin2 pð’=2Þ�

�
: ð7Þ

2.2. The two-dimensional crystallite

Equation (7) refers to a two-dimensional crystallite. The

third dimension, namely the extension in the z direction, has

not been considered here. For a simple circular arc, i.e.

considering m = 0, the intensity scattered by the crystallite in

the angle �, using equation (7), becomes

Ið�Þ ¼ N2f 2
ð�Þ J2

0 ½ð4�=�ÞR sin ��

þ 2f 2
ð�Þ

Pþ1
p¼�1

Jp½ð4�=�ÞR sin ��

�
�
½sin2 Npð’=2Þ�=½sin2 pð’=2Þ�

�
; ð8Þ

where f(�) is the atomic scattering factor, when the arc

comprises N atoms. For a full circle, N ¼ 2�R=a, where a is the

distance along the arc formed between neighboring atoms (see

Fig. 1). Thus for a full circle of atoms constituting the crys-

tallite, where p is a positive integer and Jp’s with odd values of

p will cancel each other, since J�pðxÞ ¼ ð�1ÞpJpðxÞ (Pierce &

Foster, 1957) and JpðxÞ ¼ J0 for p = 0,
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Figure 1
Representation of XY plane of a curved crystallite, where: AOM = �0 =
angle made by incident beam with the Y axis; AON = � = angle made by
the diffracted beam with the Y axis; MON = 2� = the angle of scattering =
� � �0; AB = innermost arc; CD = outermost arc; R = radius of the
innermost arc; b = radial distance between consecutive arcs; ’ = angular
separation between two consecutive atoms in the same area; mb = radial
distance between two atoms m apart; r’ = angular distance between two
atoms r apart in the same arc; Pmr = position of the rth atom on the mth
arc; a = interatomic distance between two consecutive atoms on the same
arc = R’; am = (R + mb)’; C = distance between two consecutive layers in
the z direction.



Ið�Þ ¼ f 2
ð�Þ

4�2R2

a2
J2

0

4�R

�
sin �

� 	

þ 4
Xþ1
p¼þ2

f 2ð�Þ Jp

4�R

�
sin �

� 	
sin2
ðR=aÞpð’=2Þ

sin2 pð’=2Þ
: ð9Þ

Assuming N to be of the order of 10, which appears consistent

with a nanotube, the first term in equations (7) and (8) will be

predominant – particularly because Jp(x) is generally much

smaller than J0(x). The model of equiangularly spaced atoms

on a circle or a circular arc sets a limit to the value of ’.

The value of N on each coaxial arc is the same. On the

arc for which m = 0 N ¼ 2�R=a0, while for m = k

N ¼ 2�½ðRþ kbÞ=ak�. Thus ak � a0 ¼ 2�kb=N. The inter-

atomic distance a can be stretched only to a certain extent. The

value of k will thus depend on the values of N and b. For large

R only certain numbers of concentric circles are possible. Thus

the model will be of two concentric circles with a permissible

thickness. The cases of a solid thick circular cylinder and a

circular ring have been solved (Cormack, 1957; Oster & Riley,

1952). However, these authors have assumed a uniform

distribution of scattering matter. The current model of an

angularly periodical arrangement of point scatterers over-

comes the limitations of these cases and provides a wider

application, as outlined below.

2.3. The case of cylindrical rods

In actual practice, the cylindrical scatterers may be

supposed to consist of several circular rings of point atoms

separated by a uniform vertical distance C. It has been shown

that for an unpolarized primary beam of intensity I0, the

intensity I(S) from a small parallelepipedal crystal is given by

(Warren, 1969)

IðSÞ ¼ I0 f 2
sin2
ð�=�ÞS � ðN1A1Þ
� �

sin2
ð�=�ÞS �A1

� � � sin2
ð�=�ÞS � ðN2A2Þ
� �

sin2
ð�=�ÞS �A2

� �

�
sin2
ð�=�ÞS � ðN3A3Þ
� �

sin2
ð�=�ÞS �A3

�
Þ

; ð10aÞ

where S = Sd � S0, and A1, A2 and A3 are repeat distances in

the x, y and z directions, respectively. Owing to the special

cylindrical shape of the scatterers described here, we can take

sin2
ð�=�ÞS � ðN2A2Þ
� �

sin2
ð�=�ÞS �A2

� � � sin2
ð�=�ÞS � ðN3A3Þ
� �

sin2
ð�=�ÞS �A3

� � ¼ GðSÞGðSÞ�;

ð10bÞ

where hG(S)G(S)*i is the same as in equation (7). The

thickness of the cylinder will then be TC if there are T such

rings to make up the cylinder, where T = N3|A3| in the equa-

tion above, and C is the dimension of C. Then the intensity of

the scattered radiation is proportional to

IðSÞ ¼ f 2
ðSÞhGðSÞGðSÞ�i

sin2 �TC � S

sin2 �C � S
: ð10cÞ

For a full circular cylinder N ¼ 2�R=a. For a fragmented

cylinder N will depend upon the degree of fragmentation.

2.4. Low-angle approximation

When the angle of scattering � is low, that is �! 0, sin �!
�. This approximation is valid approximately up to � ! 4�.

Under these conditions

J0½ð4�R=�Þ sin �� ¼ J0ð4�R�=�Þ

¼ 1�
4��=�ð Þ

2
R2

4
þ

4��=�ð Þ
4
R4

64

¼ 1� ð4�2=�2
ÞR2�2

þ ð4�4=�4
ÞR4�4

ð11aÞ

and

Jp½ð4�R=�Þ sin �� ¼ Jp 4�R�=�ð Þ

¼
4��=�ð Þ

pRp

2pP!
1�

4��=�ð Þ
2R2

2ðpþ 1Þ
þ

4��=�ð Þ
4R4

24ð2p þ 2Þ


 �
:

ð11bÞ

Also, knowing that when p is an integer, J�pðxÞ ¼ ð�1ÞpJpðxÞ

(Pierce & Foster, 1957), equation (7) becomes

Ið�Þ ¼ N2f 2ð�Þ
XM�1

m¼0

J2
0 ½ð4�=�ÞðRþmbÞ sin ��

þ 4f 2
ð�Þ
X1
p¼1

XM�1

m¼0

Jp½ð4�=�ÞðRþmbÞ sin ��
sin2 Npð�=2Þ

sin2 pð�=2Þ
:

ð12Þ

Since Jp’s with odd values of p will cancel each other, we may

accept, according to the first approximation and equation (11),

Ið�Þ ¼ N2f 2
ð�Þ

PM�1

m¼0

J2
0 ½ð4�=�ÞðRþmbÞ sin ��

¼ N2f 2
ð�Þ

PM�1

m¼0

J2
0 ½ð4�=�ÞðRþmbÞ sin ��

¼ N2f 2ð�Þ
�

M � ð8�2�2=�2Þ½MR2 þ 2ðM � 1ÞRb

þ ðM � 1Þb2
� þ ð8�4�4=�4

Þ½MR4
þ 4ðM � 1ÞR3b

þ 6ðM � 1ÞR2b2 þ 4ðM � 1ÞRb3�
�
:

ð13Þ

In the first approximation, let us consider m = 0 so that the

solid rod has only radius R and N ¼ 2�R=a, and in the low-

angle approximation jSj ¼ ð2�=�Þ sin � ¼ 2��=�. Combining

equations (7) and (10) we have

Ið�Þ ¼ f 2
ð�Þ jGG�jh i

sin2 �TC � S

sin2 �C � S
:

Taking the first term of equation (7), since J2
0ðxÞ 	 JpðxÞ,

Ið�Þ ¼ f 2ð�ÞN2J2
0 ð4�R=�Þ sin �½ �

sin2
ð2�=�ÞTC sin �

sin2
ð2�=�ÞC sin �

: ð14Þ

Now, because of the low-angle approximation, sin � ! �,

therefore

Ið�Þ ¼ f 2ð�ÞN2J2
0 4�R�=�ð Þ

sin2
ð2�=�ÞTC�

sin2
ð2�=�ÞC�

: ð15Þ

Substituting for N as in equation (9),
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Ið�Þ ¼
4�2R2

a2
f 2
ð�Þ J2

0

4�

�
R�

� 	
sin2
ð2�=�ÞTC�

sin2
ð2�=�ÞC�

: ð16Þ

Then according to equation (11) and the relation

½sin2
ð1=2Þnx�=½2 sin2

ð1=2Þx� ¼ ðn=2Þ þ ðn� 1Þ cos x [see equa-

tion 640 of Pierce & Foster (1957)],

sin2
ð1=2Þð4�=�ÞTC�

sin2
ð1=2Þð4�=�ÞC�

¼ 2½ðT=2Þ þ ðT � 1Þ cosð4�=�ÞC��

¼ 2½ðT=2Þ þ ðT � 1Þ�; ð17Þ

where � = 0 and so cosð2�=�ÞC� ¼ 1.

Now, when � = 0, f(�) = Z, where Z is the atomic number.

Also, since J0ðxÞ ¼ 1� ðx2=4Þ ¼ expð�x2=4Þ, so

J0ð4�R�=�Þ ¼ expð�16�2R2�2=4�2
Þ ¼ expð�4�2R2�2=�2

Þ:

ð18Þ

Combining equations (17) and (18) and applying them to

equation (15), we can write

Ið�Þ ¼ ð4�2R2=a2ÞZ2ð3T � 2Þ exp½�ð8�2=�2ÞR2�2� ð19Þ

or

ln Ið�Þ ¼ 2 ln ð2�R=aÞZð3T � 2Þ1=2
� �

� ð8�2=�2
ÞR2�2

ð20Þ

¼ 2 lnð2�RÞ þ ln Z � ln a½ � þ lnð3T � 2Þ � ð8�2=�2ÞR2�2:

ð21Þ

By taking four readings of I(�) at four different values of �, by

changing � if necessary, for the same tubule, and by applying

equation (21), values of R, a, Z and T – the components of the

measurements of the tubule – can be determined.

2.5. Application of the results of equations (19) and (21)

The expressions derived in equations (19) and (21) have

been applied to the case of a reasonable set of data for an

aluminosilicate tubule with an ordinary X-ray source. The

assumed values are: R = 200 a.u., a = 4 a.u., Z = 4, T = 14, � =

2 a.u. For these data, the intensity scattered at the small angle

� according to equation (19) will be

ln Ið�Þ ¼ 19:4841� 8� 10�5�2
ð22Þ

for � = 0 to 4�, that is � = 0 to 0.069 rad.

These values are highly plausible, signifying that the theory

and the assumptions made in this work are correct. Equation

(22) resembles the well known Guinier equation for scattering

at low angles by cylindrical rods (Matsushima et al., 1998).

3. Discussion

Many new materials are based on nanostructured media and

have specific properties which strongly depend upon supra-

molecular organization. One of the uses of nanotubes is for

the entrapment of drugs, medicine, proteins, genetic materials

etc. The clay mineral halloysite is used for this purpose.

Recently, the anti-inflammatory agent 5-aminosalicylic acid

has been entrapped in tubes of halloysite. Halloysite

[Al2Si2O5(OH)4] is a clay mineral of tubular structure

(Brindley et al., 1946), which we have earlier shown to have a

cylindrical structure (Mitra & Bhattacherjee, 1975). Hollow

tubes of halloysite have been studied by Viseras et al. (2008) to

determine to what extent 5-aminosalicylic acid could be

retained by halloysite tubes. By using various techniques they

found that aminosalicylic acid molecules are effectively

entrapped by halloysite tubes.

Another mineral, imogolite [AlSiO3(OH)4], should also be

mentioned in this connection. It is an important constituent of

some types of soils which play important roles in controlling

water quality in forest soils and also in other applications. The

structure of imogolite has been reported (Cradwick et al.,

1972) on the basis of electron-diffraction studies. It consists of

aluminosilicate tubes with external diameter 2.1 nm, the tube

walls being composed of a di-octahedral gibbsite-like Al(OH)3

sheet with SiO2(OH) tetrahedra attached to the sheet around

the empty octahedral sites. A cross section of an imogolite

nanotube described by Pohl et al. (1996) is similar to the case

shown in Fig. 1, with the first arc belonging to H (Z = 1), the

next to O (Z = 8) followed by Si (Z = 13), then Al (Z = 14).

Hence, in this case, with Al and Si considered approximately

the same and contributions from H and O being negligibly

small, Fig. 1 can be represented as an equiatomic structure.

Nanotubes of serpentine from the Mighei and Murchison

chondrite meteorites are usually 20–230 nm in length and

2–9 nm internal diameter. Owing to their large surface area

and hollow structures, they are considered to have served as

containers of primordial fluid (Zega et al., 2004). There are

many more examples. New types of nanotubes for other

purposes can be identified by studying various cylindrical

structures by the methods outlined in the equations above. It

may be mentioned that the use of equations (19) and (21)

enables the user to identify the physical parameters, namely

radius and length, of the cylindrical tubule under study and

also the chemical nature (Z) and the length constant, a, of the

material, assuming it to be ‘cylindrical cubic’ [extension of

orthorhombic (Whittaker, 1955)]. Extensions of equations

(19), (20) and (21) by using equations (11), (12) and (13) will

enable one to extend the study to the case of multiwalled

tubular cylinders. Thus, the parameters of cylindrical struc-

tures, such as fiber particles and nanotubes, can be deter-

mined.
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